登录    注册    忘记密码

期刊文章详细信息

生成对抗网络在各领域应用研究进展  ( EI收录)  

Research Progress on Application of Generative Adversarial Networks in Various Fields

  

文献类型:期刊文章

作  者:刘建伟[1] 谢浩杰[1] 罗雄麟[1]

LIU Jian-Wei;XIE Hao-Jie;LUO Xiong-Lin(Research Institute of Automation,China University of Petroleum(Beijing),Beijing 102249)

机构地区:[1]中国石油大学(北京)自动化研究所,北京102249

出  处:《自动化学报》

基  金:国家自然科学基金(21676295);中国石油大学(北京)2018年度前瞻导向及培育项目“神经网络深度学习理论框架和分析方法及工具”(2462018QZDX02)资助。

年  份:2020

卷  号:46

期  号:12

起止页码:2500-2536

语  种:中文

收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、EI、IC、JST、MR、PUBMED、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊

摘  要:随着深度学习的快速发展,生成式模型领域也取得了显著进展.生成对抗网络(Generative adversarial network,GAN)是一种无监督的学习方法,它是根据博弈论中的二人零和博弈理论提出的.GAN具有一个生成器网络和一个判别器网络,并通过对抗学习进行训练.近年来,GAN成为一个炙手可热的研究方向.GAN不仅在图像领域取得了不错的成绩,还在自然语言处理(Natural language processing,NLP)以及其他领域崭露头角.本文对GAN的基本原理、训练过程和传统GAN存在的问题进行了阐述,进一步详细介绍了通过损失函数的修改、网络结构的变化以及两者结合的手段提出的GAN变种模型的原理结构,其中包括:条件生成对抗网络(Conditional GAN,CGAN)、基于Wasserstein距离的生成对抗网络(Wasserstein-GAN,WGAN)及其基于梯度策略的WGAN(WGAN-gradient penalty,WGAN-GP)、基于互信息理论的生成对抗网络(Informational-GAN,InfoGAN)、序列生成对抗网络(Sequence GAN,SeqGAN)、Pix2Pix、循环一致生成对抗网络(Cycle-consistent GAN,Cycle GAN)及其增强Cycle-GAN(Augmented CycleGAN).概述了在计算机视觉、语音与NLP领域中基于GAN和相应GAN变种模型的基本原理结构,其中包括:基于CGAN的脸部老化应用(Face aging CGAN,Age-cGAN)、双路径生成对抗网络(Two-pathway GAN,TP-GAN)、表示解析学习生成对抗网络(Disentangled representation learning GAN,DR-GAN)、对偶学习生成对抗网络(DualGAN)、GeneGAN、语音增强生成对抗网络(Speech enhancement GAN,SEGAN)等.介绍了GAN在医学、数据增强等领域的应用情况,其中包括:数据增强生成对抗网络(Data augmentation GAN,DAGAN)、医学生成对抗网络(Medical GAN,MedGAN)、无监督像素级域自适应方法(Unsupervised pixel-level domain adaptation method,PixelDA).最后对GAN未来发展趋势及方向进行了展望.

关 键 词:生成对抗网络  对抗学习  自然语言处理 计算机视觉 零和博弈 语音合成与分析  

分 类 号:TP183] TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心