期刊文章详细信息
基于k近邻主元得分差分的故障检测策略 ( EI收录)
Fault Detection Strategy Based on Principal Component Score Difference of k Nearest Neighbors
文献类型:期刊文章
ZHANG Cheng;GAO Xian-Wen;LI Yuan(College of Information Science and Engineering,Northeast-ern University,Shenyang 110819;Research Center for Tech-nical Process Fault Diagnosis and Safety,Shenyang University of Chemical Technology,Shenyang 110142)
机构地区:[1]东北大学信息科学与工程学院,沈阳110819 [2]沈阳化工大学技术过程故障诊断与安全性研究中心,沈阳110142
基 金:国家自然科学基金(61490701,61573088,61673279);辽宁省自然科学基金(2015020164)资助。
年 份:2020
卷 号:46
期 号:10
起止页码:2229-2238
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、EI、IC、JST、MR、PUBMED、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:针对具有非线性和多模态特征过程的故障检测问题,本文提出一种基于k近邻主元得分差分的故障检测策略.首先,通过主元分析(Principal component analysis,PCA)方法计算样本的真实得分.然后,应用样本的k近邻均值计算样本估计得分.接下来,通过上述两种得分计算样本的得分差分矩阵和残差矩阵,其中残差矩阵由样本的估计得分计算得到,这区别于传统方法.最后,在差分子空间和残差子空间中分别建立新的统计指标进行故障检测.值得注意的是本文的得分差分方法能够消除数据结构对过程故障检测的影响,同时,新的统计量能够提高过程的故障检测率.将本文方法在两个模拟例子和Tennessee Eastman(TE)过程中进行测试,并与传统方法如PCA、KPCA、DPCA和FD-k NN等进行对比分析,测试结果证明了本文方法的有效性.
关 键 词:主元分析 得分差分 K近邻 多模态过程 TE过程 故障检测
分 类 号:TP277]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...