登录    注册    忘记密码

期刊文章详细信息

改进YOLOv3的车辆实时检测与信息识别技术    

Real-Time Vehicle Detection and Information Recognition Technology Based on YOLOv3Improved Algorithm

  

文献类型:期刊文章

作  者:顾恭[1] 徐旭东[1]

GU Gong;XU Xudong(School of Computer Science,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京工业大学信息学部计算机学院,北京100124

出  处:《计算机工程与应用》

年  份:2020

卷  号:56

期  号:22

起止页码:173-184

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD_E2019_2020、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:在复杂无约束自然场景下对车辆实时检测和相关信息的提取识别一直是计算机视觉领域内重要的研究内容之一。该领域问题的突破不但可以为汽车自动驾驶技术的实现和完善带来实际效果的提升,并且在停车场的自动停车调度算法和实时泊车监控系统的改进上有着重要的现实意义。针对当前实时车辆信息检测中存在的车辆检测区域不完整、精度不高以及无法对场景中较远车辆进行准确定位等相关问题,提出了一种Vehicle-YOLO的实时车辆检测分类模型。该模型在最新的YOLOv3算法基础上,通过更改图像输入参数,增强深度残差网络的特征提取能力,采用5个不同尺寸的特征图依次对潜在车辆的边界框提取等方式来提升车辆实时信息检测的精度和普适性,并通过KITTI、VOC等数据集进行性能验证和分析。实验结果表明,Vehicle-YOLO模型在KITTI数据集上达到了96%的均值平均精度,传输速度约为40 f/s,在精度提升的情况下仍能保持良好的实时检测速率。此外,Vehicle-YOLO检测模型在VOC等其余数据集上的实验结果也展现了不同程度的精度提升,故该模型在常见物体的定位检测中有较好的普适性,相较于传统的物体检测算法模型有更好的表现。

关 键 词:车辆实时检测  YOLOv3  目标定位  卷积神经网络 深度残差网络  特征图  

分 类 号:TP391.4]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心