期刊文章详细信息
文献类型:期刊文章
RUAN Xiao-gang;ZHOU Jing;ZHANG Jing-jing;ZHU Xiao-qing(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100124,China)
机构地区:[1]北京工业大学信息学部,北京100124 [2]北京工业大学计算智能与智能系统北京市重点实验室,北京100124
基 金:国家自然科学基金项目(61773027);北京市教育委员会科技计划重点项目(KZ201610005010);北京市自然科学基金项目(4202005)。
年 份:2020
卷 号:35
期 号:10
起止页码:2543-2548
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD2019_2020、EI、IC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:为解决移动机器人未知环境下的路径规划问题,提出基于子目标搜索的机器人目标导向RRT (rapidly-exploring random trees)路径规划算法.一方面,针对传统RRT算法固有的盲目搜索问题,引入目标导向函数,形成目标导向RRT路径规划算法,这一改进可减少冗余搜索,提高路径规划效率;另一方面,为了使机器人在首次探索未知环境时也能顺利抵达目标点,提出3种不同情况下的子目标搜索策略,包括无障碍环境下的直达策略、扫到边界点时的最短距离策略和扫不到边界点时的后退策略,这3种策略使机器人能够完成对未知环境的探索,而且可以克服易出现的局部极小点问题,使机器人具有逃离局部极小环境的能力.仿真实验结果验证了所提出算法的可行性和有效性.
关 键 词:移动机器人 目标导向RRT 子目标搜索 未知环境导航 局部极小 路径规划算法
分 类 号:TP273]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...