期刊文章详细信息
文献类型:期刊文章
FAN Ze-ze;LIU Qian;CHAI Jie-wei;YANG Xiao-feng;LI Hai-fang(College of Computer Science and Technology,Taiyuan University of Technology,Jinzhong 030600,China)
机构地区:[1]太原理工大学信息与计算机学院,山西晋中030600
基 金:国家自然科学基金(61976150);山西省重点研发计划(201803D31038);山西省晋中市科技重点研发计划(Y192006);赛尔网络下一代互联网技术创新项目(NGII20181206)
年 份:2020
卷 号:42
期 号:9
起止页码:1599-1607
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD_E2019_2020、JST、ZGKJHX、核心刊
摘 要:苹果是多地的主产水果和主要经济作物之一,通过自然环境下的苹果树图像对苹果检测并分级有助于推进果业现代化。结合深度学习和传统方法,提出融合颜色与果径特征的果实检测与分级算法。为提高果树图像中小目标的检出和光照不匀、果实颜色差异大时检测边框的准确率,基于卷积神经网络提出自然场景下的苹果检测算法,在2组不同尺度的特征图上进行果实检测,提取检测框内图像在CIELAB颜色空间下b^*、(1.8b^*-L^*)颜色分量,将图像二值化并精确提取目标轮廓二次校正检测框。实验结果显示,苹果检测算法的准确率达91.60%,F1-score值达87.62%。据图像内目标大小与实际尺寸的映射方法计算苹果直径,实现果实分级,实验表明分级准确率达90%。
关 键 词:苹果检测 苹果分级 卷积神经网络 果径 颜色分量
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...