期刊文章详细信息
基于不同预处理高光谱信息的鸡肉滴水损失率快速预测研究
Fast Prediction of Drip Loss Rate in Chicken Meat Based on Different Pretreated Hyperspectral Information
文献类型:期刊文章
HE Hong-ju;WANG Yang-yang;WANG Wei;WANG Hui;MA Han-jun;CHEN Fu-sheng;WANG Yu-ling;ZHU Ming-ming;ZHAO Sheng-ming(School of Food Science,Henan Institute of Science and Technology,Xinxiang 453003,China;Postdoctoral Research and Development Base,Henan Institute of Science and Technology,Xinxiang 453003,China;College of Grain,Oil and Food,Henan University of Technology,Zhengzhou 450001,China;School of Life and Technology Science,Henan Institute of Science and Technology,Xinxiang 453003,China)
机构地区:[1]河南科技学院食品学院,河南新乡453003 [2]河南科技学院博士后研发基地,河南新乡453003 [3]河南工业大学粮油食品学院,河南郑州450001 [4]河南科技学院生命科技学院,河南新乡453003
基 金:河南省科技攻关项目(182102310060);河南省重大科技专项项目(161100110600);中国博士后科学基金(2018M632767);河南省青年人才托举工程项目(2018HYTP008);河南省博士后科研项目(001801021);河南省留学人员科研择优资助项目(豫人社办函2020-70-10);河南科技学院高层次人才引进项目(2015015);河南科技学院重大科研培育项目(2016ZD03)。
年 份:2020
卷 号:41
期 号:18
起止页码:252-256
语 种:中文
收录情况:BDHX、BDHX2017、CAS、JST、RCCSE、ZGKJHX、核心刊
摘 要:本文旨在通过挖掘不同预处理高光谱(900~1700 nm)信息构建鸡肉滴水损失率的快速预测模型。首先采集每个鸡肉样本高光谱图像并提取图像感兴趣区域内的平均光谱信息,经基线校正(BC)、标准正态变量校正(SNV)、多元散射校正(MSC)、高斯滤波平滑(GFS)、归一化校正(NC)等五种光谱不同预处理,利用偏最小二乘回归(Partial Least Squares Regression,PLSR)算法构建光谱信息与鸡肉滴水损失率之间的定量关系。然后分别基于回归系数法(Regression Coefficient,RC)、连续投影算法(Successive Projections Algorithm,SPA)和逐步回归算法(Stepwise)筛选出对模型精度影响较大的最优波长优化全波段PLS模型。结果显示,基于BC光谱的全波段PLSR模型(BC-PLSR)预测鸡肉滴水损失率效果更好(r_P=0.95,RMSEP=0.29%,RPD=3.07,ΔE=0.0024%)。利用Stepwise法从BC光谱中选取的14个最优波长(900.6、903.8、905.5、907.1、917.0、997.7、1162.2、1272.4、1354.8、1369.6、1410.8、1425.6、1584.1和1695.1 nm)建立的SW-BC-PLSR模型(r_P=0.97,RMSEP=0.24%,RPD=3.82,ΔE=0.0012%)和多元线性回归(Multiple Linear Regression,MLR)模型SW-BC-MLR(r_P=0.97、RMSEP=0.22%、RPD=4.19,ΔE=0.0036%)预测鸡肉滴水损失率效果均良好。本试验表明,基于近红外高光谱信息可潜在实现鸡肉滴水损失率的快速预测。
关 键 词:鸡肉 滴水损失率 高光谱图像 偏最小二乘 逐步回归法 多元线性回归 快速检测
分 类 号:TS251.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...