期刊文章详细信息
文献类型:期刊文章
Cao Zhijun;Zhang Liang(Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学电子信息与自动化学院,天津300300
基 金:国家自然科学基金(61179045)。
年 份:2020
卷 号:38
期 号:4
起止页码:49-55
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD_E2019_2020、JST、ZGKJHX、核心刊
摘 要:提出一种快速目标检测算法。在训练时,引入区域数目调节层,实时判断当前训练效果,根据当前训练效果,适当增减候选区域数目,达到节省开销的目的。训练结束,记录最佳候选区域数量。在测试时,候选区域数量选择为最佳候选区域数量。此外,深层次的卷积神经网络容易在训练中出现退化现象,引入残差网络能有效抑制该现象。以Resnet50为基础进行改进,重新搭建起58层特征提取网络。实验在PASCAL VOC数据集上进行,较经典网络模型,速率提升了18%,识别率提高了3%。另外针对特定飞行器检测做出改进,诸如多尺度训练和丰富锚点样式。
关 键 词:深度学习 目标检测 残差网络 区域建议网络 区域数目调节层
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...