期刊文章详细信息
文献类型:期刊文章
YU Yong-wei;HAN Xin;DU Liu-qing(College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China)
机构地区:[1]重庆理工大学机械工程学院,重庆400054
基 金:重庆市基础与前沿研究计划基金资助项目(No.cstc2017jcyjAX0344);国家自然科学基金资助项目(No.51775074)。
年 份:2020
卷 号:28
期 号:8
起止页码:1799-1809
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAS、CSCD、CSCD2019_2020、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对传统目标检测方法不能兼顾目标识别精度和检测实时性,且在实际生产复杂工况下识别效果不佳的问题,提出一种基于Inception-SSD框架的零件深度学习识别方法。首先,提出了融合Inception预测结构的SSD优化框架Inception-SSD,将Inception网络结构引入到SSD网络额外层中,并使用批量标准化模块(BN)和残差结构连接,从而捕获更多目标信息而又不会增加网络复杂性,以提高检测准确率而又不影响其检测速度,并增加算法鲁棒性;然后提出在原损失函数基础上增加排斥损失项以改进损失函数,同时采用一种基于加权算法的非极大值抑制方法,克服模型表达能力不足的缺点。最后,将改进前后SSD算法在自制零件数据集上进行训练和测试,实验结果表明本文方法在实际生产过程复杂情况下检测准确率达到97.8%,相比原SSD算法提升11.7%,检测速率41 frame/s。在提高检测精度同时还保证了实时性,能够满足实际生产环境零件检测需求。
关 键 词:深度学习 目标检测 零件识别 Inception结构 残差结构
分 类 号:TP273.5]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...