登录    注册    忘记密码

期刊文章详细信息

基于多损失融合与谱归一化的图像超分辨率方法    

Multi-loss ensemble and spectral normalization for image super-resolution

  

文献类型:期刊文章

作  者:许宁宁[1] 郑凯[1]

Xu Ningning;Zheng Kai(Computing Center College of Computer Science&Software Engineering,East China Normal University,Shanghai 200062,China)

机构地区:[1]华东师范大学计算机科学与软件工程学院计算中心,上海200062

出  处:《计算机应用研究》

年  份:2020

卷  号:37

期  号:8

起止页码:2531-2535

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD_E2019_2020、IC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊

摘  要:图像超分辨率重建研究存在结果客观衡量指标不断变优,但是视觉感知质量依旧平滑的问题。同时,应用生成对抗网络的超分辨率模型中的鉴别器(discriminator)设计存在一个普遍的问题,即训练不稳定问题。针对以上问题作出两点改进:提出多损失融合的方法,寻求一种在PSNR指标与感知质量之间的平衡,通过将均方误差损失、感知损失、风格损失与对抗损失进行融合的方法,在提高PSNR值的同时,改善图像视觉质量;在基于生成对抗网络的超分辨率模型的鉴别器设计中引入谱归一化(spectral normalization),以实现更稳定有效的训练。结果显示,改进后的方法得到了更高的PSNR指标与更逼真的视觉感知质量,并进一步表明感知质量对于超分辨率重建的重要性。

关 键 词:多损失融合  谱归一化  图像超分辨率

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心