期刊文章详细信息
文献类型:期刊文章
LI Xin;ZHANG Hui;WU Chao-zhong;ZHANG Qi;SUN Yi-fan(Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,Hubei,China;Engineering Research Center of Transportation Safety,Ministry of Education,Wuhan 430063,Hubei,China;School of Transportation and Logistics Engineering,Xinjiang Agricultural University,Urumqi 830052,Xinjiang,China)
机构地区:[1]武汉理工大学智能交通系统研究中心,湖北武汉430063 [2]武汉理工大学水路公路交通安全控制与装备教育部工程研究中心,湖北武汉430063 [3]新疆农业大学交通与物流工程学院,新疆乌鲁木齐830052
基 金:国家自然科学基金项目(51775396,61603282,U1764262,71761032);国家重点研发计划项目(2017YFC0804802)。
年 份:2020
卷 号:33
期 号:6
起止页码:168-181
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAS、CSCD、CSCD2019_2020、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:疲劳驾驶是交通事故的主要诱因之一,精确检测驾驶人的疲劳程度是主动预防疲劳驾驶事故的核心内容之一。通过开展自然驾驶试验,以驾驶人的生物信号脉搏波(Blood Pressure Waveform,BPW)为数据源,使用脉搏波波形分析方法从中提取有效表征驾驶疲劳的特征指标,构建用于检测驾驶疲劳等级的BPW特征指标集,在此基础上引入D-S证据理论建立了基于BPW特征融合的驾驶疲劳检测模型。结果表明:该模型对测试数据的疲劳驾驶理论检测精度达到了91.8%,优于贝叶斯网络模型的81.4%和支持向量机模型的84.3%,能够满足实际应用的需求,但与决策回归树检测模型99.7%的精度相比较还有差距。研究获得的基于生物信息融合的驾驶疲劳检查模型和方法在驾驶疲劳检测与监测中具有很好的应用前景,可为辅助安全驾驶和疲劳预警及主动干预提供新的技术方案。
关 键 词:交通工程 脉搏波分析 D-S证据理论 驾驶疲劳 交通事故
分 类 号:U491.2[物流管理与工程类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...