期刊文章详细信息
文献类型:期刊文章
ZHAO Fu-qun;ZHOU Ming-quan(Shool of Information, Xi′an University of Finance and Economics, Xi′an 710100, China;Shool of Information Science and Technology, Northwest University, Xi′an 710127, China)
机构地区:[1]西安财经大学信息学院,陕西西安710010 [2]西北大学信息科学与技术学院,陕西西安710127
基 金:国家自然科学基金资助项目(No.61731015)。
年 份:2020
卷 号:28
期 号:7
起止页码:1618-1625
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAS、CSCD、CSCD2019_2020、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:三维激光扫描设备获取的初始点云模型中含有较多的噪声点,不利于后期的点云处理,需要将其进行剔除。为了有效地保持点云的尖锐几何特征,本文提出一种由粗到精的层次化点云去噪算法。首先构造点及其邻域点的张量投票矩阵,通过计算该矩阵的特征值和特征向量构造扩散张量,并基于该扩散张量利用各向异性扩散方程进行循环滤波,从而实现点云初始粗去噪;然后计算滤波后点云的曲率特征,并根据曲率值进一步删除点云中的噪声点,从而实现点云精确去噪;最后通过计算点云熵值对去噪算法进行定量评价。实验结果表明,本文提出的点云去噪算法具有较大的熵值、较小的去噪误差和较高的执行效率。因此说,该层次化点云去噪算法在保持尖锐几何特征的同时,可以快速精确剔除噪声点,是一种有效的点云去噪算法。
关 键 词:点云去噪 张量投票 各向异性滤波 曲率 熵值
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...