期刊文章详细信息
文献类型:期刊文章
LIU Xia;GUO Yanan(School of Computer Science and Engineering,Cangzhou Teachers College,Cangzhou 061001,China;School of Electronic Information Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
机构地区:[1]沧州师范学院计算机科学与工程学院,河北沧州061001 [2]山东科技大学电子信息工程学院,山东青岛266590
基 金:国家自然科学基金(51965014);中国博士后科学基金特别资助(2015T80717)。
年 份:2020
期 号:5
起止页码:16-20
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD_E2019_2020、JST、RCCSE、ZGKJHX、核心刊
摘 要:随机森林是一种新兴的、高度灵活的机器学习算法,在预测和分类方面有着良好的稳定性,且算法性能要优于许多单预测器。鉴于此,本文提出了随机森林的遥感影像变化检测算法,利用熵率法对遥感影像进行超像素分割,获取最优分割结果;构建了基于随机森林的遥感影像变化检测模型,以所提取的Gabor特征和光谱特征作为模型输入进行训练和预测,并将有决策树的投票作为最终的变化检测结果。试验结果表明,本文所构建的随机森林变化检测模型在漏检率和虚检率上明显低于其他算法,且总体正确率高,在算法时间上也明显优于其他算法。
关 键 词:遥感影像 变化检测 随机森林 超像素 GABOR特征
分 类 号:P237]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...