期刊文章详细信息
文献类型:期刊文章
LI Ding(Personnel Office,Xi'an Aeronautical University,Xi'an 710077,China)
机构地区:[1]西安航空学院人事处,西安710077
年 份:2020
卷 号:38
期 号:1
起止页码:65-70
语 种:中文
收录情况:普通刊
摘 要:近年来,随着社交网络的迅速发展,舆情监督成为国内外研究的热点。由于网民参与评论的渠道多种多样,因此,需要对网络用户进行网络言论监测。舆情分析的基础是情感分析技术,然而,现存的情感分析技术存在着不足,准确率难以得到保证。基于对情感分析方法进行改进,以及进一步提高分析结果准确率的研究目标,通过采用知网情感词典并对其合并扩展的情感分析方法和基于机器学习的SVM和KNN情感分析方法,在比较了基于情感词典的情感分析方法以及基于机器学习的情感分析方法的优缺点后,提出了用情感词典和机器学习方法相结合的方式进行情感分析。实验表明,结合情感词典以及SVM和KNN加权方式提高情感分类的准确率较之前提升了近5个百分点,准确率明显提高。
关 键 词:网络言论 情感分析 准确率 改进
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...