期刊文章详细信息
稀疏LS-SVM算法在海底趋势面模型构建中的应用
Application of Sparse LS-SVM Algorithm in the Construction of Trend Surface Model
文献类型:期刊文章
LI Hongwu;LIU Yuhong;HUANG Xianyuan;ZHAI Guojun;LU Xiuping;HUANG Chenhu;FAN Long(The First Military Representative Office of the Navy,Tianjin 300061,China;92859 Troops,Tianjin 300061,China;Department of Military Oceanography and Hydrography,Dalian Naval Academy,Dalian 116018,China)
机构地区:[1]海军装备部第一军事代表室,天津300061 [2]92859部队,天津300061 [3]海军大连舰艇学院军事海洋与测绘系,辽宁大连116018
基 金:国家自然科学基金(41706111)。
年 份:2020
卷 号:40
期 号:1
起止页码:53-57
语 种:中文
收录情况:AJ、CSCD、CSCD_E2019_2020、JST、ZGKJHX、普通刊
摘 要:利用最小二乘向量机(LS-SVM)算法构造海底趋势面的过程中,由于算法解缺乏稀疏性,使得异常测深训练样本对最终构造的函数模型也产生影响。为了解决该问题,在对留一样本交叉检核法研究的基础上提出了LS-SVM稀疏算法,由于留一样本交叉检核法求解的残差序列可以有效地表示函数预测值偏离实际水深的程度,因此利用该原则重新修剪后的样本数据不仅使算法具有稀疏特性,而且构造的函数模型更合理。为了检验算法的有效性,选取实测的多波束测深数据进行验证,计算结果表明留一样本交叉检核法能够合理地筛选出对函数模型构造贡献程度大的测深训练样本,使得构造的函数模型更合理。
关 键 词:最小二乘支持向量机 留一样本交叉检核法 稀疏性 拉格朗日乘子 海底趋势面构建
分 类 号:P229]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...