期刊文章详细信息
文献类型:期刊文章
CHEN Chenglong;QIU Zhicheng;DU Qiliang;TIAN Lianfang;LIN Bin;LI Miao(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China;Key Laboratory of Autonomous Systems and Network Control,South China University of Technology,Guangzhou 510640,China;Zhuhai Institute of Modern Industry Innovation,South China University of Technology,Zhuhai,Guangdong 519170,China;Guangzhou Metro Design&Research Institute Co.,Ltd.,Guangzhou 510010,China;Hitachi Elevator(Guangzhou)Escalator Co.,Ltd.,Guangzhou 510660,China)
机构地区:[1]华南理工大学机械与汽车工程学院,广州510640 [2]华南理工大学自主系统与网络控制教育部重点实验室,广州510640 [3]华南理工大学珠海现代产业创新研究院,广东珠海519170 [4]广州地铁设计研究院股份有限公司,广州510010 [5]日立电梯(广州)自动扶梯有限公司,广州510660
基 金:广东省重点研发计划-精准农业(No.2019B020214001);国家科技部海防公益类项目(No.201505002);广东省重点研发计划——新一代人工智能(No.2018B010109001);广州市产业技术重大攻关计划(No.2019-01-01-12-1006-0001);广东省科学技术厅重大科技计划(No.2016B090912001);中央高校基本科研业务费专项资金(No.2018KZ05);华南理工大学研究生教育改革项目(No.zysk2018005)。
年 份:2020
卷 号:56
期 号:9
起止页码:175-182
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD_E2019_2020、IC、JST、PROQUEST、RCCSE、ZGKJHX、核心刊
摘 要:针对已知地图的室内机器人全局重定位、绑架恢复问题,提出一种基于改进的Netvlad卷积神经网络的室内机器人全局重定位方法,通过激光雷达获取的障碍物信息引导机器人到达空旷区域,粗定位阶段,使用栅格地图最短连通域距离作为正样本判据,并对Netvlad引入残差网络,通过图像检索得到机器人的粗略位置及角度信息。使用粗定位阶段得到的位置和角度信息作为自适应蒙特卡罗定位的初始值来估计机器人的精确位姿。实验结果表明,与传统定位方法相比,该方法可以使机器人从绑架问题中快速恢复准确位姿。
关 键 词:激光雷达 自适应蒙特卡洛 卷积特征 重定位 绑架恢复
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...