登录    注册    忘记密码

期刊文章详细信息

基于深度学习的电力变压器智能故障诊断方法    

Intelligent fault diagnosis method of power transformer using deep learning

  

文献类型:期刊文章

作  者:张朝龙[1,2] 何怡刚[2] 杜博伦[2] 张兰芳[1] 江善和[1]

Zhang Chaolong;He Yigang;Du Bolun;Zhang Lanfang;Jiang Shanhe(School of Physics and Electronic Engineering,Anqing Normal University,Anqing 246011,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)

机构地区:[1]安庆师范大学物理与电气工程学院,安庆246011 [2]武汉大学电气与自动化学院,武汉430072

出  处:《电子测量与仪器学报》

基  金:国家自然科学基金项目(51607004,51577046,51777050);国家自然科学基金重点项目(51637004);国家重点研发计划“重大科学仪器设备开发”(2016YFF0102200);装备预先研究重点项目(41402040301);安徽高校自然科学研究重点项目(KJ2018A0369)资助。

年  份:2020

卷  号:32

期  号:1

起止页码:81-89

语  种:中文

收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:针对电力变压器的故障诊断问题,提出了一种可用于海量监测数据的智能故障诊断方法。首先设计了无源射频识别(radio frequency identification,RFID)传感器标签用于测量变压器的振动信号,该设计具有结构简单、便利性强和功耗低等优点。针对于测量的变压器振动信号数量大、维度高、成分复杂、信噪比低等特点,利用深度学习技术中堆叠自编码器对测量的信号进行特征提取,提取的特征具有相同状态高度聚集,不同状态明显分离的优点。随后,基于提取的海量特征数据,应用加权贝叶斯分类模型进行故障诊断。为进一步提高故障诊断方法的性能,提出了混沌量子粒子群算法分别对堆叠自编码器和加权贝叶斯分类模型的参数进行优化。通过一个10 kV变压器的故障诊断实验表明,设计的无源RFID传感器标签能可靠地获取变压器振动信号,提出的故障诊断方法具有较高的故障诊断正确率。

关 键 词:变压器 故障诊断 无源射频识别  堆叠自编码器  加权贝叶斯分类模型  

分 类 号:TH707[仪器类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心