期刊文章详细信息
文献类型:期刊文章
Zuo Chao;Feng Shijie;Zhang Xiangyu;Han Jing;Qian Chen(Smart Computational Imaging Laboratory(SCILab),School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing,Jiangsu210094,China;Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense,Nanjing University of Science and Technology,Nanjing,Jiangsu210094,China)
机构地区:[1]南京理工大学电子工程与光电技术学院,智能计算成像实验室(SCILab),江苏南京210094 [2]南京理工大学江苏省光谱成像与智能感知重点实验室,江苏南京210094
基 金:国家自然科学基金(61722506,61705105,11574152);总装“十三五”装备预研项目(30102070102);总装“十三五”领域基金(61404150202);国防科技项目基金(0106173);江苏省杰出青年基金(BK20170034);江苏省重点研发计划(BE2017162);江苏省“333工程”科研项目资助计划(BRA2016407);江苏省光谱成像与智能感知重点实验室开放基金(3091801410411)。
年 份:2020
卷 号:40
期 号:1
起止页码:39-64
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAS、CSA-PROQEUST、CSCD、CSCD2019_2020、EI、IC、JST、RCCSE、RSC、SCOPUS、ZGKJHX、核心刊
摘 要:近年来,光学成像技术已经由传统的强度、彩色成像发展进入计算光学成像时代。计算光学成像基于几何光学、波动光学等理论对场景目标经光学系统成像再到探测器采样这一完整图像生成过程建立精确的正向数学模型,再求解该正向成像模型所对应的"逆问题",以计算重构的方式来获得场景目标的高质量图像或者传统技术无法直接获得的相位、光谱、偏振、光场、相干度、折射率、三维形貌等高维度物理信息。然而,计算成像系统的实际成像性能也同样极大程度地受限于"正向数学模型的准确性"以及"逆向重构算法的可靠性",实际成像物理过程的不可预见性与高维病态逆问题求解的复杂性已成为这一领域进一步发展的瓶颈问题。近年来,人工智能与深度学习技术的飞跃式发展为计算光学成像技术开启了一扇全新的大门。不同于传统计算成像方法所依赖的物理驱动,深度学习下的计算成像是一类由数据驱动的方法,它不但解决了许多过去计算成像领域难以解决的难题,还在信息获取能力、成像的功能、核心性能指标(如成像空间分辨率、时间分辨率、灵敏度等)上都获得了显著提升。基于此,首先概括性介绍深度学习技术在计算光学成像领域的研究进展与最新成果,然后分析了当前深度学习技术在计算光学成像领域面临的主要问题与挑战,最后展望了该领域未来的发展方向与可能的研究方向。
关 键 词:成像系统 计算成像 深度学习 光学成像 光信息处理
分 类 号:O436]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...