登录    注册    忘记密码

期刊文章详细信息

基于CART决策树和BP神经网络的landsat 8影像粳稻提取方法    

Classification Method by Fusion of CART Decision Tree and BP Based on Landsat 8 Image

  

文献类型:期刊文章

作  者:许童羽[1] 胡开越[1] 周云成[1] 于丰华[1] 冯帅[1]

XU Tong-yu;HU Kai-yue;ZHOU Yun-cheng;YU Feng-hua;FENG Shuai(College of Information and Electric Engineering/Research center of Liaoning Agricultural Informationization Engineering Technology,Shenyang Agricultural University,Shenyang 110161,China)

机构地区:[1]沈阳农业大学信息与电气工程学院/辽宁省农业信息化工程技术研究中心,沈阳110161

出  处:《沈阳农业大学学报》

基  金:国家重点研发计划项目[(2018YFD0300309)-03]。

年  份:2020

卷  号:51

期  号:2

起止页码:169-176

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CAB、CAS、CSCD、CSCD2019_2020、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:及时、准确地掌握水稻空间分布和种植面积信息对预测水稻产量、指导农业生产等农业活动起着重要作用。遥感技术因其快速、综合等优势,而被广泛应用于农作物识别领域。以沈阳市为研究区域,选取沈阳农业大学道南、辽中和沈北新区作为粳稻种植代表区域获取CART算法的训练样本,并结合粳稻移栽期的NDVI、EVI、LSWI数据,训练作物分割阈值,构建决策树初步提取出研究区粳稻空间分布信息。为进一步去除上述提取区域的其他地物信息,构建粳稻抽穗期和成熟期的植被指数、纹理、ISODATA非监督分类数据及其原始波谱特征的多特征数据集,利用BP神经网络对多组不同特征综合数据集进行粳稻分类提取,得到对分类精度贡献较大的特征和最佳分类数据集,并分别利用最大似然和BP神经网络分类法,结合决策树分类结果和实地样本数据,对最佳分类数据集进行分类结果对比和精度验证。结果表明:采用CART决策树和BP神经网络相结合的方法可以获得较高的分类精度,总体精度为89.1%,Kappa系数达到0.881。利用作物关键物候期中等分辨率影像,结合多时相波谱特征和植被指数,采用CART决策树和BP神经网络相结合的分类法能有效提高粳稻的分类精度,为基于传统机器学习模型的关键物候期遥感数据作物分类研究提供一条新思路。

关 键 词:粳稻 CART算法 决策树 植被指数 BP神经网络

分 类 号:S511]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心