期刊文章详细信息
机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值
Application value of machine learning algorithms for preoperative prediction of microvascular invasion in hepatocellular carcinoma
文献类型:期刊文章
Liu Hongzhi;Lin Haitao;Lin Zhaowang;Fu Jun;Ding Zongren;Guo Pengfei;Liu Jingfeng(Southeast Big Data Institute of Hepatobiliary Health,Mengchao Hepatobiliary Hospital of Fujian Medical University,Hepatobiliary Medical Center of Fujian,Fouzhou 350025,China)
机构地区:[1]福建医科大学孟超肝胆医院东南肝胆健康大数据研究所福建省肝胆医学中心,福州350025
基 金:福建省发展和改革委员会专项基金(31010308)。
年 份:2020
卷 号:19
期 号:2
起止页码:156-165
语 种:中文
收录情况:BDHX、BDHX2017、CAB、CAS、CSA-PROQEUST、CSCD、CSCD2019_2020、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:目的探讨机器学习算法在肝细胞癌微血管侵犯(MVI)术前预测中的应用价值。方法采用回顾性描述性研究方法。收集2015年5月至2018年12月福建医科大学孟超肝胆医院收治的277例肝细胞癌患者的临床病理资料;男235例,女42例;年龄为(56±10)岁,年龄范围为33~80岁。患者术前均行磁共振成像检查。227例肝细胞癌患者通过计算机产生随机数方法以7∶3比例分为训练集193例和验证集84例。应用逻辑回归列线图,支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)和轻量级梯度提升机(LightGBM)机器学习算法构建MVI术前预测模型。观察指标:(1)训练集及验证集患者临床病理资料分析。(2)影响训练集患者肿瘤MVI危险因素分析。(3)机器学习算法预测模型构建及其术前预测肿瘤MVI准确性比较。正态分布的计量资料以±s表示,组间比较采用配对t检验。计数资料以绝对数表示,组间比较采用χ2检验。单因素和多因素分析采用Logistic回归模型。结果(1)训练集及验证集患者临床病理资料分析:训练集和验证集患者性别(男,女)分别为157、36例和78、6例,两组比较,差异有统计学意义(χ2=6.028,P<0.05)。(2)影响训练集患者肿瘤MVI危险因素分析:训练集193例患者中,MVI阳性108例,MVI阴性85例。单因素分析结果显示:年龄、肿瘤数目、肿瘤直径、卫星病灶、肿瘤边界、甲胎蛋白(AFP)、碱性磷酸酶(ALP)和纤维蛋白原水平是影响肿瘤MVI的相关因素(比值比=0.971,2.449,1.368,4.050,2.956,4.083,2.532,1.996,95%可信区间为0.943~1.000,1.169~5.130,1.180~1.585,1.316~12.465,1.310~6.670,2.214~7.532,1.016~6.311,1.323~3.012,P<0.05)。多因素分析结果显示:AFP>20μg/L、肿瘤多发、肿瘤直径越大、肿瘤边界不光滑是影响肿瘤MVI的独立危险因素(比值比=3.680,3.100,1.438,3.628,95%可信区间为1.842~7.351,1.334~7.203,1.201~1.721,1.438~9.150,P<0.05),而年龄越大,MVI发生风险越低(比值比=0.958
关 键 词:肝肿瘤 微血管侵犯 预测 机器学习 轻量级梯度提升机
分 类 号:R735] TP1[临床医学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...