期刊文章详细信息
文献类型:期刊文章
ZHAO Qian;HUANG Jingtao(College of Electrical Engineering,Henan University of Science and Technology,Luoyang 471023,China)
机构地区:[1]河南科技大学电气工程学院
基 金:国家自然科学基金项目资助(U1504617)~~
年 份:2020
卷 号:48
期 号:4
起止页码:89-96
语 种:中文
收录情况:BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD2019_2020、EI、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:针对风电功率的高随机和强波动性,提出一种基于EMD-SA-SVR的风电功率超短期预测方法。采用经验模态分解(Empirical Mode Decomposition, EMD)提取风电功率序列的不同特征。将原始序列分解为多个更具规律的模态,针对每个模态序列建立各自的预测模型,以消除不同特征之间的相互影响。鉴于支持向量回归(Support Vector Regression, SVR)好的泛化能力,研究建立基于SVR的各模态预测模型。进一步采用模拟退火(Simulated Annealing,SA)算法对SVR参数进行优化以解决模型选择的多极值复杂非线性问题,获得各模态分量的最优模型,进而汇总各模态分量的结果得到风电功率预测值。在某风电场历史数据上的对比分析表明,EMD-SA-SVR模型可以有效提高风电功率超短期预测精度。
关 键 词:风电功率 超短期预测 经验模态分解 支持向量回归 模拟退火
分 类 号:TM614]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...