期刊文章详细信息
文献类型:期刊文章
SHI Zhenwei;LEI Sen(Image Processing Center,School of Astronautics,Beihang University,Beijing,100191,China)
机构地区:[1]北京航空航天大学宇航学院图像处理中心
基 金:国家重点研发计划(2017YFC1405605)资助项目;国家自然科学基金(61671037)资助项目;北京市自然科学基金(4192034)资助项目
年 份:2020
卷 号:35
期 号:1
起止页码:1-20
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2019_2020、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:图像超分辨重建是一种提升图像分辨率的图像处理技术,而超分辨问题是一个难解的欠定问题,近些年来研究人员主要采用基于学习的方法,从大量数据中学习图像先验信息,以实现对解空间的约束。本文介绍了近20年来主流的图像超分辨重建算法,主要分为基于传统特征的方法和基于深度学习的方法。对于传统的超分辨重建算法,阐述了基于邻域嵌入的方法、基于稀疏表示的方法以及基于局部线性回归的方法。对于基于深度学习的超分辨重建算法,详细总结了网络模型结构设计、上采样方式、损失函数形式以及复杂条件下的算法设计4个方面。此外,本文简要分析了超分辨重建技术在视频超分辨、遥感图像超分辨以及在视觉高层任务方面的应用。最后,本文展望了图像超分辨重建技术的未来发展方向。
关 键 词:图像超分辨 邻域嵌入 稀疏表示 局部线性回归 深度学习
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...