登录    注册    忘记密码

期刊文章详细信息

基于GrabCut算法的玉米病害图像识别方法研究    

Research on maize disease image recognition method based on GrabCut algorithms

  

文献类型:期刊文章

作  者:顾博[1] 邓蕾蕾[1] 李巍[2] 吕博[3]

Gu Bo;Deng Leilei;Li Wei;Lv Bo(College of Information Technology,Jilin Agricultural University,Changchun,130118,China;College of Foreign Language,Jilin Agricultural University,Changchun,130118,China;College of Food Engineering and Technology,Jilin Agricultural University,Changchun,130118,China)

机构地区:[1]吉林农业大学信息技术学院,长春市130118 [2]吉林农业大学外国语学院,长春市130118 [3]吉林农业大学食品科学与工程学院,长春市130118

出  处:《中国农机化学报》

基  金:吉林省教育厅“十三五”科研规划课题(JJKH20180650KJ)

年  份:2019

卷  号:40

期  号:11

起止页码:143-149

语  种:中文

收录情况:BDHX、BDHX2017、RCCSE、核心刊

摘  要:GrabCut算法是一种交互式操作少、分割精度高的图像分割方法,但是对于前背景颜色相近或低对比度的区域时难以准确分割前景区域。鉴于此,在实现GrabCut算法的自动分割的基础上,融合基于显著性的SLIC算法来对玉米病害图像进行更好的目标识别和图像分割。以玉米小斑病、大斑病和灰斑病三种病害的图像作为样本,采用融合显著信息的GrabCut算法与相同样本数量和条件下的One-Cut算法和SLIC算法进行试验和对比分析。试验表明,同其他两种算法相比,本文算法对于试验中玉米的三种病害具有更好的分割精度,对于玉米的叶鞘、茎和叶片部分的图像丢失率能够保持在1%以下,分别为0.899%、0.229%和0.914%,对于玉米病害部分能够进行有效地提取,具有较好的分割效果,对于玉米小斑病、大斑病和灰斑病的识别率上能够达到91.67%、86.36%和72.00%,同时通过训练模式进行验证,识别率分别能够达到87.2%、82.4%和83.6%,拒识率分别为4.5%、6.7%和6.3%。

关 键 词:图像分割 SLIC算法  GrabCut算法  玉米病虫害

分 类 号:O24] TP311[数学类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心