期刊文章详细信息
文献类型:期刊文章
TIAN Qichuan;WANG Manli(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
机构地区:[1]北京建筑大学电气与信息工程学院,北京100044 [2]北京建筑大学建筑大数据智能处理方法研究北京市重点实验室,北京100044
基 金:北京市教育委员会科技发展计划面上项目(No.KM201410016016);北京建筑大学科学研究基金(No.00331614021);北京建筑大学研究生创新项目
年 份:2019
卷 号:55
期 号:22
起止页码:25-33
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2019_2020、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:深度学习是人工智能领域的研究热点,利用深度学习支持人工智能的研究工作已经是必然趋势,在图像、语音、文本等领域已经展现出性能优势。对深度学习相关文献进行了分析研究,介绍了深度学习的概念和方法框架,综述了当前深度学习模型及其应用情况,分析了深度学习需要突破的瓶颈,指出了深度学习未来的研究方向。
关 键 词:深度学习 卷积神经网络(CNN) 建模 人脸识别
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...