期刊文章详细信息
文献类型:期刊文章
Zeng Jiexian;Fang Qi;Fu Xiang;Leng Lu(School of Software,Nanchang Hangkong University,Nanchang 330063,China;School of Science and Technology,Nanchang Hangkong University,Gongqingcheng 332020,China)
机构地区:[1]南昌航空大学软件学院,南昌330063 [2]南昌航空大学科技学院,共青城332020
基 金:国家自然科学基金项目(61763033,61662049,61741312)~~
年 份:2019
卷 号:24
期 号:10
起止页码:1683-1691
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:目的行人检测在自动驾驶、视频监控领域中有着广泛应用,是一个热门的研究话题。针对当前基于深度学习的行人检测算法在分辨率较低、行人尺度较小的情况下存在误检和漏检问题,提出一种融合多层特征的多尺度的行人检测算法。方法首先,针对行人检测问题,删除了深度残差网络的一部分,仅采用深度残差网络的3个区域提取特征图,然后采用最邻近上采样法将最后一层提取的特征图放大两倍后再用相加法,将高层语义信息丰富的特征和低层细节信息丰富的特征进行融合;最后将融合后的3层特征分别输入区域候选网络中,经过softmax分类,得到带有行人的候选框,从而实现行人检测的目的。结果实验结果表明,在Caltech行人检测数据集上,在每幅图像虚警率(FPPI)为10%的条件下,本文算法丢失率仅为57.88%,比最好的模型之一——多尺度卷积神经网络模型(MS-CNN)丢失率(60.95%)降低3.07%。结论深层的特征具有高语义信息且感受野较大的特点,而浅层的特征具有位置信息且感受野较小的特点,融合两者特征可以达到增强深层特征的效果,让深层的特征具有较为丰富的目标位置信息。融合后的多层特征图具有不同程度的细节和语义信息,对检测不同尺度的行人有较好的效果。所以利用融合后的特征进行行人检测,能够提高行人检测性能。
关 键 词:目标检测 行人检测 特征融合 多尺度行人 多层特征
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...