登录    注册    忘记密码

期刊文章详细信息

基于混合灰色关联分析-广义回归神经网络的光伏电站短期功率预测    

Short-term power prediction for photovoltaic power plants based on hybrid grey relational analysis-generalized regression neural network

  

文献类型:期刊文章

作  者:彭周宁[1] 林培杰[1] 赖云锋[1] 程树英[1] 陈志聪[1]

Peng Zhouning;Lin Peijie;Lai Yunfeng;Cheng Shuying;Chen Zhicong(Institute of Micro-Nano Devices and Solar Cells,College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116)

机构地区:[1]福州大学物理与信息工程学院微纳器件与太阳能电池研究所

出  处:《电气技术》

基  金:国家自然科学基金(61574038、61601127、51508105);福建省科技厅项目(2018J01774、2018J01645、2019J01218、2016H6012);福建省教育厅项目(JAT160073);福建省经信委行业关键共性技术项目(83016006、830020)

年  份:2019

卷  号:20

期  号:10

起止页码:11-18

语  种:中文

收录情况:普通刊

摘  要:随着大规模的光伏发电接入电网,其输出的随机性和波动性给电网调度管理带来巨大的挑战。基于此,本文提出了一种同时考虑统计(历史光伏输出功率)和物理(历史和未来的气象信息)变量的混合灰色关联分析-广义回归神经网络预测模型。首先,计算多元气象因子与光伏发电功率的皮尔逊相关系数,将相关系数较高的气象因子确定为建立预测模型的气象输入因子;然后,采用灰色关联分析算法计算历史日与待预测日的关联度确定最佳相似日,选取最佳相似日的光伏输出功率和气象输入因子以及待预测日的相关气象参数作为广义回归神经网络模型的输入参数,得到待预测日各个时刻输出功率的预测值;最后,利用澳大利亚DKA太阳能中心网站所提供的光伏电站历史气象数据和功率数据对所设计的模型进行训练和测试,验证模型在不同季节下的预测效果。结果表明,与所选择的对比模型相比,本文所建模型具有较好的预测性能。

关 键 词:光伏功率预测  灰色关联分析 广义回归神经网络 最佳相似日  

分 类 号:TP3[计算机类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心