登录    注册    忘记密码

期刊文章详细信息

改进的XGBoost模型在股票预测中的应用    

Application of Improved XGBoost Model in Stock Forecasting

  

文献类型:期刊文章

作  者:王燕[1] 郭元凯[1]

WANG Yan;GUO Yuankai(College of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)

机构地区:[1]兰州理工大学计算机与通信学院

出  处:《计算机工程与应用》

年  份:2019

卷  号:55

期  号:20

起止页码:202-207

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2019_2020、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊

摘  要:随着时代的不断进步,人民生活水平日益提高。在解决温饱问题之余,有了可供投资的余财。越来越多的人将目光转向股市投资,为股市发展提供了资金条件。然而在纷繁复杂的股票市场,如何寻找最优股成为亟待解决的问题。这不仅是投资者单方面的困惑,也是股票预测领域中学者们所关心的重点。通过网格搜索算法对XGBoost 模型进行参数优化构建GS-XGBoost 的金融预测模型,并将该模型运用于股票短期预测中。分别以中国平安、中国建筑、中国中车、科大讯飞和三一重工2005 年4 月至2018 年12 月28 日的每日收盘价作为实验数据。通过实验对比,相较于XGBoost 原模型、GBDT模型以及SVM模型,GS-XGBoost 模型在MSE、RMSE与MAE三个评价指标上都表现出较好的预测结果。从而验证,GS-XGBoost 金融预测模型在股票短期预测中具有更好的拟合性能。

关 键 词:XGBoost  网格搜索 梯度增强决策树(GBDT)  支持向量机(SVM)  股价预测

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心