期刊文章详细信息
文献类型:期刊文章
ZHAO Hong;LIU Ying;LI Shuang;XU Pengfei;ZHENG Qinhua(Faculty of Education,Beijing Normal University,Beijing100875,China;Peking University Elementary School,Beijing 100875,China)
机构地区:[1]北京师范大学教育学部,北京100875 [2]北京大学附属小学,北京100875
年 份:2019
卷 号:25
期 号:5
起止页码:110-120
语 种:中文
收录情况:BDHX、BDHX2017、CSSCI、CSSCI2019_2020、JST、NSSD、RCCSE、RWSKHX、ZGKJHX、核心刊
摘 要:获取学习者个性特征是实现以学生为中心的精准化、个性化教学的重要前提,而学习行为是分析学习者个性特征的重要依据。本研究以参加奥鹏公共研修平台在线学习者为研究对象,基于人格特质生成学习行为偏好假设,探索利用机器学习分类算法实现在线学习行为的人格特质识别;同时基于文献构建人格特质类型与在线学习行为之间的映射关系,采用Rapid Miner数据挖掘工具探索决策树、朴素贝叶斯和支持向量机三种算法对五种人格特质的识别效果。结果发现:决策树算法对人格特质类型的识别准确率高于其他两种算法,对大五人格特质的综合识别效果最好;不同人格特质识别灵敏度不同,尽责性人格特质类型的识别灵敏度最高,神经质人格特质最低。
关 键 词:人格特质 在线学习行为 学习行为偏好 分类算法
分 类 号:G434[教育学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...