期刊文章详细信息
文献类型:期刊文章
SHI Chun-dan;QIN Lin(School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
机构地区:[1]南京工业大学计算机科学与技术学院
年 份:2019
卷 号:46
期 号:9
起止页码:237-242
语 种:中文
收录情况:BDHX、BDHX2017、CSA、CSCD、CSCD_E2019_2020、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:针对传统的命名实体识别方法存在严重依赖大量人工特征、领域知识和分词效果,以及未充分利用词序信息等问题,提出了一种基于双向门控循环单元(BGRU)神经网络结构的命名实体识别模型。该模型利用外部数据,通过在大型自动分词文本上预先训练词嵌入词典,将潜在词信息整合到基于字符的BGRU-CRF中,充分利用了潜在词的信息,提取了上下文的综合信息,并更加有效地避免了实体歧义。此外,利用注意力机制来分配BGRU网络结构中特定信息的权重,从句子中选择最相关的字符和单词,有效地获取了特定词语在文本中的长距离依赖关系,识别信息表达的分类,对命名实体进行识别。该模型明确地利用了词与词之间的序列信息,并且不受分词错误的影响。实验结果表明,与传统的序列标注模型以及神经网络模型相比,所提模型在数据集MSRA上实体识别的总体F1值提高了3.08%,所提模型在数据集OntoNotes上的实体识别的总体F1值提高了0.16%。
关 键 词:命名实体识别 双向门控循环单元 注意力机制
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...