登录    注册    忘记密码

期刊文章详细信息

一种基于局部中心性的网络关键节点识别算法  ( EI收录)  

A Novel Algorithm for Identifying Critical Nodes in Networks Based on Local Centrality

  

文献类型:期刊文章

作  者:郑文萍[1,2,3] 吴志康[1] 杨贵[1]

Zheng Wenping;Wu Zhikang;Yang Gui(School of Computer and Information Technology,Shanxi University,Taiyuan 030006;Key Laboratory of Computational Intelligence & Chinese Information Processing (Shanxi University),Ministry of Education,Taiyuan 030006;Research Institute of Big Data Science and Industry,Shanxi University,Taiyuan 030006)

机构地区:[1]山西大学计算机与信息技术学院,太原030006 [2]计算智能与中文信息处理教育部重点实验室(山西大学),太原030006 [3]山西大学大数据科学与产业研究院,太原030006

出  处:《计算机研究与发展》

基  金:山西省回国留学人员科研资助项目(2017-014);山西省自然科学基金项目(201801D121123);国家自然科学基金项目(61572005)~~

年  份:2019

卷  号:56

期  号:9

起止页码:1872-1880

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSA-PROQEUST、CSCD、CSCD2019_2020、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:关键节点识别已经成为分析与理解复杂网络特性、结构、功能的有效方式.提出了一种基于节点中心性的关键节点识别算法框架(greedy algorithm for critical node problem, GCNP),根据某种中心性指标选择一个网络的初始点覆盖集;从网络中删除该点覆盖集,迭代选择点覆盖集中使原网络连通节点对增加最小的节点向原网络回添,直至点覆盖集中节点满足用户给定的待删除关键节点数.为了更好地选择初始的节点覆盖集,提出了一种基于局部拓扑信息的节点中心性度量指标(local neighbor centrality, LNC).在16个人工网络和9个真实网络上的实验结果表明:与单独使用各中心性指标相比,采用GCNP算法框架可以提高算法性能.此外,所提的节点中心性度量指标LNC较度中心性(degree centrality, DC)、LocalRank中心性、K壳中心性(K-Shell, KS)、局部度和中心性(local degree sum centrality, LDS)能更准确地评估节点的重要性.

关 键 词:关键节点  复杂网络 网络连通性 点覆盖集  局部中心性  

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心