期刊文章详细信息
基于迁移学习和BiLSTM-CRF的中文命名实体识别
Chinese Named Entity Recognition Based on Transfer Learning and BiLSTM-CRF
文献类型:期刊文章
WU Hui;LV Li;YU Bi-hui(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China)
机构地区:[1]中国科学院大学,北京100049 [2]中国科学院沈阳计算技术研究所,沈阳110168
年 份:2019
卷 号:40
期 号:6
起止页码:1142-1147
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2019_2020、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对中文命名实体识别问题,该文提出了一种基于迁移学习和深度学习的TrBiLSTM-CRF模型.该模型采用基于实例的迁移学习算法,通过权值生成和样本选择,将源域的知识迁移到目标域,有效地解决了深度学习对少量数据学习能力不足的问题;通过词向量、BiLSTM、CRF等操作融合了上下文语义信息,克服了对人工特征和专家知识的依赖.实验结果表明,TrBiLSTMCRF模型在小规模数据集上进行中文机构名命名实体识别时,其准确率、召回率和F值分别为91. 57%、72. 29%和0. 80%,相比于该文提到的其他方法,取得了较好的效果.
关 键 词:中文命名实体识别 TrBiLSTM-CRF 迁移学习 深度学习 词向量
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...