登录    注册    忘记密码

期刊文章详细信息

基于迁移学习和BiLSTM-CRF的中文命名实体识别    

Chinese Named Entity Recognition Based on Transfer Learning and BiLSTM-CRF

  

文献类型:期刊文章

作  者:武惠[1,2] 吕立[2] 于碧辉[2]

WU Hui;LV Li;YU Bi-hui(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China)

机构地区:[1]中国科学院大学,北京100049 [2]中国科学院沈阳计算技术研究所,沈阳110168

出  处:《小型微型计算机系统》

年  份:2019

卷  号:40

期  号:6

起止页码:1142-1147

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2019_2020、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:针对中文命名实体识别问题,该文提出了一种基于迁移学习和深度学习的TrBiLSTM-CRF模型.该模型采用基于实例的迁移学习算法,通过权值生成和样本选择,将源域的知识迁移到目标域,有效地解决了深度学习对少量数据学习能力不足的问题;通过词向量、BiLSTM、CRF等操作融合了上下文语义信息,克服了对人工特征和专家知识的依赖.实验结果表明,TrBiLSTMCRF模型在小规模数据集上进行中文机构名命名实体识别时,其准确率、召回率和F值分别为91. 57%、72. 29%和0. 80%,相比于该文提到的其他方法,取得了较好的效果.

关 键 词:中文命名实体识别 TrBiLSTM-CRF  迁移学习  深度学习  词向量  

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心