期刊文章详细信息
基于边缘特征点互信息熵的医学图像配准方法
Medical Image Registration Based on Mutual Information Entropy Combined with Edge Correlation Feature
文献类型:期刊文章
Wei Benzheng;Gan Jie;Yin Yilong(College of Science and Technology,Shandong University of Traditional Chinese Medicine,Jinan,250355,China;Computational Medicine Lab,Shandong University of Traditional Chinese Medicine,Jinan,250355,China;Department of Radiology,Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Jinan,250001,China;School of Computer Science and Technology,Shandong University,Jinan,250100,China)
机构地区:[1]山东中医药大学理工学院,济南250355 [2]山东中医药大学计算医学实验室,济南250355 [3]山东中医药大学第二附属医院放射科,济南250001 [4]山东大学计算机科学与技术学院,济南250100
基 金:国家自然科学基金(U1201258;61572300)资助项目;山东省自然科学基金(ZR2015FM010)资助项目;山东高校科技计划(J15LN20)资助项目;山东省中医药科技发展计划(2015-026)资助项目
年 份:2018
卷 号:33
期 号:2
起止页码:248-258
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2017_2018、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:基于互信息熵的图像配准方法已经被广泛应用于医学图像配准中,为克服互信息配准方法的不足,结合图像空间结构信息,本文提出一种基于边缘特征点互信息熵的医学图像配准方法,设计了包括互信息熵、图像空间结构和形状特征点等多信息融合的配准新测度。算法首先采用改进的形态学梯度提取医学图像边缘轮廓;然后构造了以边缘区域特征和梯度信息为基础的特征点互信息能量函数,并通过最小化能量函数来获取配准参数;最后,结合梯度下降法优化策略,实现图像配准。实验研究表明,该方法在保证了配准精度的同时,配准速度较快、鲁棒性较好、综合性能优良,具有一定的临床推广价值。
关 键 词:图像配准 医学图像 互信息熵 测度函数 边缘特征
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...