期刊文章详细信息
近场动力学与有限元方法耦合求解热传导问题 ( EI收录)
STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD
文献类型:期刊文章
Liu Shuo;Fang Guodong;Wang Bing;Fu Maoqing;Liang Jun(Science and Technology on Advanced Composites in Special Environments Key Laboratory,Harbin Institute of Technology,Harbin 150001,China;Institute of Advanced Structure Technology,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]哈尔滨工业大学特种环境复合材料技术国防科技重点实验室,哈尔滨150001 [2]北京理工大学先进结构技术研究院,北京100081
基 金:国家自然科学基金资助项目(11672089;11732002;11325210;11421091)
年 份:2018
卷 号:50
期 号:2
起止页码:339-348
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2017_2018、EI、IC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:求解含裂纹等不连续问题一直是计算力学的重点研究课题之一,以偏微分方程为基础的连续介质力学方法处理不连续问题时面临很大的困难.近场动力学方法是一种基于积分方程的非局部理论,在处理不连续问题时有很大的优越性.本文提出了求解含裂纹热传导问题的一种新的近场动力学与有限元法的耦合方法.结合近场动力学方法处理不连续问题的优势以及有限元方法计算效率高的优势,将求解区域划分为两个区域,近场动力学区域和有限元区域.包含裂纹的区域采用近场动力学方法建模,其他区域采用有限元方法建模.本文提出的耦合方案实施简单方便,近场动力学区域与有限元区域之间不需要设置重叠区域.耦合方法通过近场动力学粒子与其域内所有粒子(包括近场动力学粒子和有限元节点)以非局部方式连接,有限元节点与其周围的所有粒子以有限元方式相互作用.将有限元热传导矩阵和近场动力学粒子相互作用矩阵写入同一整体热传导矩阵中,并采用Guyan缩聚法进一步减小计算量.分别采用连续介质力学方法和近场动力学方法对一维以及二维温度场算例进行模拟,结果表明,本文的耦合方法具有较高的计算精度和计算效率.该耦合方案可以进一步拓展到热力耦合条件下含裂纹材料和结构的裂纹扩展问题.
关 键 词:近场动力学 耦合 有限元法 热传导
分 类 号:O34]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...