登录    注册    忘记密码

期刊文章详细信息

基于多特征融合和深度置信网络的稻田苗期杂草识别  ( EI收录)  

Recognition of weeds at seedling stage in paddy fields using multi-feature fusion and deep belief networks

  

文献类型:期刊文章

作  者:邓向武[1] 齐龙[1] 马旭[1] 蒋郁[1,2] 陈学深[1] 刘海云[1] 陈伟烽[1]

Deng Xiangwu;Qi Long;Ma Xu;Jiang Yu;Chen Xueshen;Liu Haiyun;Chen Weifeng(College of Engineering,South China Agricultural University,Guangzhou 510642,China;Modern Educational Technology Center,South China Agricultural University,Guangzhou 510642,China)

机构地区:[1]华南农业大学工程学院,广州510642 [2]华南农业大学现代教育技术中心,广州510642

出  处:《农业工程学报》

基  金:国家自然科学基金(51575195);现代农业产业技术体系建设专项资金(CARS-01-43);广东省自然科学基金(2015A030313402);广州市科技计划项目(201803020021)

年  份:2018

卷  号:34

期  号:14

起止页码:165-172

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2017_2018、EI、FSTA、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:杂草的准确识别是田间杂草精准防控管理的前提,机器视觉技术是实现杂草准确识别的有效手段。该文以水稻苗期杂草为研究对象,采集稻田自然背景下和不同光照条件下的6种杂草图像共928幅,包括空心莲子草、丁香蓼、鳢肠、野慈姑、稗草和千金子。采用1.1G-R颜色因子将杂草RGB图像进行灰度化,选择自动阈值自动分割得到杂草前景二值图像,通过腐蚀膨胀形态学操作进行叶片内部孔洞填充,应用面积滤波去除其他干扰目标,最后将杂草二值图像与RGB图像进行掩膜运算得到去除背景的杂草图像;提取杂草图像的颜色特征、形状特征和纹理特征共101维特征,并对其进行归一化处理。在双隐含层和单隐含层的深度置信网络(deep belief networks,DBN)结构基础上,对DBN隐含层节点数选择方法进行研究。针对双隐含层DBN节点数,选择恒值型、升值型和降值型3种节点组合方式进行优化研究,当网络结构为101-210-55-6时杂草识别率为83.55%;通过对单隐含层节点参数优化得到网络结构为101-200-6时杂草识别率达到91.13%。以同一测试样本的运行时间值作为模型的测试时间对3种不同模型进行耗时测试,SVM模型、BP模型和DBN模型测试结果分别为0.029 7、0.030 6和0.034 1 s,试验结果表明基于多特征融合的DBN模型的识别精度最高,且耗时较其他2种模型相差不大,可满足实时检测的速度要求,所以在实际应用中应优先选择基于多特征融合的DBN模型。该研究可为稻田杂草识别与药剂选择性喷施提供参考。

关 键 词:机器视觉 图像处理  杂草识别 深度置信网络  多特征融合 特征提取

分 类 号:TP391.41]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心