期刊文章详细信息
文献类型:期刊文章
ZHU Hong-Lei;ZHU Chang-Sheng;XU Zhi-Gang(School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050)
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
基 金:国家自然科学基金(61563030);甘肃省自然科学基金(1610RJZA027)资助~~
年 份:2018
卷 号:44
期 号:6
起止页码:978-1004
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2017_2018、EI、IC、JST、MR、PUBMED、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:人体行为识别是计算机视觉领域的一个研究热点,具有重要理论价值和现实意义.近年来,为了评价人体行为识别方法的性能,大量的公开数据集被创建.本文系统综述了人体行为识别公开数据集的发展与前瞻:首先,对公开数据集的层次与内容进行归纳.根据数据集的数据特点和获取方式的不同,将人体行为识别的公开数据集分成4类.其次,对4类数据集分别描述,并对相应数据集的最新识别率及其研究方法进行对比与分析.然后,通过比较各数据集的信息和特征,引导研究者选取合适的基准数据集来验证其算法的性能,促进人体行为识别技术的发展.最后,给出公开数据集未来发展的趋势与人体行为识别技术的展望.
关 键 词:计算机视觉 行为识别 真实场景 多视角 多模态
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...