登录    注册    忘记密码

期刊文章详细信息

空间与谱间相关性分析的NMF高光谱解混  ( EI收录)  

NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis

  

文献类型:期刊文章

作  者:袁博[1]

YUAN Bo(School of Computer and lnformation Engineering, Nanyang Institute of Technology, Nanyang 473004, Chin)

机构地区:[1]南阳理工学院计算机与信息工程学院,南阳473004

出  处:《遥感学报》

基  金:国家自然科学基金(编号:41371353)~~

年  份:2018

卷  号:22

期  号:2

起止页码:265-276

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSA、CSCD、CSCD2017_2018、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问题,引入并结合高光谱图像两种典型的相关性特征,具体包括:基于马尔可夫随机场(MRF)模型,建立描述相邻像元空间相关特征的约束;通过复杂度映射技术,建立描述相邻波段谱间相关(光谱分段平滑)特征的约束;并将上述两种约束同时引入NMF解混目标函数中。实验结果表明,对于一般自然地物场景或人造地物场景,相对于分段平滑和稀疏约束的非负矩阵分解(PSNMFSC)、交互投影子梯度的非负矩阵分解(APSNMF)和最小体积约束的非负矩阵分解(MVCNMF)这3种代表性NMF解混参考算法,该算法可进一步提高高光谱解混精度;对于空间相关或谱间相关特征中某一种不显著的特殊场景,也具有更好的适应能力。通过将空间相关和谱间相关特征相结合,较全面地反映了高光谱数据与解混相关的重要特征,能够对绝大多数真实高光谱数据进行高精度解混,对高光谱解混及后续应用领域相关研究均具有参考价值。

关 键 词:非负矩阵分解 像元解混  空间相关性  谱间相关性  马尔可夫随机场 复杂度映射  

分 类 号:TP701]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心