登录    注册    忘记密码

期刊文章详细信息

视频烟雾检测研究进展    

Video smoke detection: a literature survey

  

文献类型:期刊文章

作  者:史劲亭[1,2] 袁非牛[2] 夏雪[2]

机构地区:[1]江西农业大学职业师范(技术)学院,南昌330045 [2]江西财经大学信息管理学院,南昌330032

出  处:《中国图象图形学报》

基  金:国家自然科学基金项目(61363038);江西省高校科技落地计划(KJLD12066);江西省青年科学家培养对象(20142BCB23014);江西省教育厅科技项目(GJJ150459;GJJ150406);江西省科技支撑计划项目(2015ZBBE50013)~~

年  份:2018

卷  号:23

期  号:3

起止页码:303-322

语  种:中文

收录情况:BDHX、BDHX2017、CSCD、CSCD2017_2018、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:目的视频烟雾检测具有响应速度快、不易受环境因素影响、适用面广、成本低等优势,为及早预警火灾提供有力保障。近年涌现大量视频检测方法,尽管检测率有所提升,但仍受到高误报率和高漏报率的困扰。为了全面反映视频烟雾检测的研究现状和最新进展,本文重点针对2014年至2017年国内外公开发表的主要文献,进行全面的梳理和分析。方法该工作建立在广泛文献调研的基础上,立足于视频烟雾检测的基本框架,围绕视频图像预处理、疑似烟区提取、烟雾特征描述、烟雾分类识别等处理阶段,系统地对最新文献进行分析和总结。此外,对区别于传统框架的深度学习检测方法亦进行了相关归纳。结果重点依据烟雾运动特征和烟雾静态特征这两类,对疑似烟区提取方法进行梳理;从统计量特征、变换域特征和局部模式特征3个方面对烟雾特征描述方法进行梳理,并从颜色、形状等七个角度进行总结;从基于规则和基于学习这两个视角,梳理烟雾识别和决策方法;最后,对于基于深度学习的方法单独进行了阐述。文献通过系统地梳理,凝练出视频烟雾检测近几年取得的进展和尚存在的不足,并对视频烟雾检测发展前景进行展望。结论针对视频烟雾检测的研究一直备受青睐,越来越多性能优秀的检测算法不断涌现。通过对现有研究进行全面梳理和系统分析,期望视频烟雾检测能取得更大的进展并更好地应用于工业领域,为火灾预警提供更有力的保障。

关 键 词:视频烟雾检测 烟雾识别  特征提取 运动特征  静态特征  局部特征  

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心