期刊文章详细信息
基于双通道卷积神经网络的文本情感分类算法 ( EI收录)
Text Sentiment Classification Algorithm Based on Double Channel Convolutional Neural Network
文献类型:期刊文章
机构地区:[1]北京工业大学信息学部多媒体与智能软件技术北京市重点实验室,北京100124
基 金:国家自然科学基金项目(No.61672065;61375059)资助~~
年 份:2018
卷 号:31
期 号:2
起止页码:158-166
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2017_2018、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对现有深度学习方法在文本情感分类任务中特征提取能力方面的不足,提出基于扩展特征和动态池化的双通道卷积神经网络的文本情感分类算法.首先,结合情感词、词性、程度副词、否定词和标点符号等多种影响文本情感倾向的词语特征,形成一个扩展文本特征.然后,把词向量特征与扩展文本特征分别作为卷积神经网络的两个输入通道,采用动态k-max池化策略,提升模型提取特征的能力.在多个标准英文数据集上的文本情感分类实验表明,文中算法的分类性能不仅高于单通道卷积神经网络算法,而且相比一些代表性算法也具有一定的优势.
关 键 词:文本情感分类 卷积神经网络 双通道 扩展特征 动态k-max池化
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...