登录    注册    忘记密码

期刊文章详细信息

基于深度信念网络的短期负荷预测方法  ( EI收录)  

Short-term Load Forecasting Based on Deep Belief Network

  

文献类型:期刊文章

作  者:孔祥玉[1] 郑锋[1] 鄂志君[2] 曹旌[2] 王鑫[2]

机构地区:[1]智能电网教育部重点实验室(天津大学),天津市300072 [2]国网天津市电力公司,天津市300010

出  处:《电力系统自动化》

基  金:国家自然科学基金资助项目(51377119);国家重点研发计划资助项目(2017YFB0902902)~~

年  份:2018

卷  号:42

期  号:5

起止页码:133-139

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD2017_2018、EI、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:电力系统信息化的发展及配电网中分布式电源和电动汽车的大量接入,增加了用电模式的复杂性,对负荷预测的精确度和稳定性提出了更高的要求。提出了一种基于深度信念网络的短期负荷预测方法。该方法包括深度信念网络的构建、模型参数的逐层预训练和微调,以及模型的应用等步骤。在模型参数预训练过程中,采用高斯—伯努利受限玻尔兹曼机(GB-RBM)作为堆叠组成深度信念网络的第1个模块,使其能够更有效地处理对负荷有影响的多类型实值输入数据;并采用无监督训练和有监督训练相结合的部分有监督训练算法进行预训练;利用列文伯格—马夸尔特(LM)优化算法微调预训练阶段得到的网络参数,使其更快收敛于最优解。最后,以实际负荷数据进行算例分析,结果表明,在训练样本较大且负荷影响因素复杂的情况下,所提方法具有更高的预测精度。

关 键 词:电力系统 负荷预测 受限玻尔兹曼机  深度信念网络  列文伯格—马夸尔特算法  

分 类 号:TM715]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心