期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中国民航大学中欧航空工程师学院,天津300300 [2]中国民航大学航空工程学院,天津300300
基 金:中央高校基本科研业务费中国民航大学专项资金(3122013H001)
年 份:2017
卷 号:32
期 号:12
起止页码:3031-3038
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSCD、CSCD2017_2018、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:为提高航空发动机故障诊断的精度,提出改进粒子群优化的Elman神经网络对航空发动机故障诊断的方法。利用MIV(平均影响值)对神经网络的输入端自变量进行筛选,降低输入维度;采用改进粒子群优化算法对Elman神经网络的权值和阀值进行优化,并对优化的神经网络进行训练;用训练好的神经网络对航空发动机故障进行诊断并与常规的BP(back propagation)、Elman神经网络、GM(1,n)、SVM(support vector machines)进行对比。仿真结果表明:IPSO-Elman(improved particle swarm optimization Elman neural network)神经网络的诊断误差在不同数量训练样本时都小于其他方法,并且在参选故障诊断的性能参数不同时,其诊断误差相近,展现出较强的适应能力。
关 键 词:航空发动机 ELMAN神经网络 平均影响值 改进粒子群优化算法 故障诊断
分 类 号:V231]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...