期刊文章详细信息
文献类型:期刊文章
机构地区:[1]南通大学机械工程学院,江苏南通226019 [2]江苏海事职业技术学院电气与自动化工程学院,南京211199
基 金:国家自然科学基金项目(51405246);江苏省产学研联合创新资金项目(BY2014081-07);南通市应用基础研究-工业创新项目(GY12016006);南通市重点实验室项目(CP2014001)
年 份:2018
卷 号:25
期 号:2
起止页码:253-258
语 种:中文
收录情况:BDHX、BDHX2017、CSA、CSA-PROQEUST、CSCD、CSCD_E2017_2018、JST、ZGKJHX、核心刊
摘 要:针对智能立体车库中自动导引运输车(Automated Guided Vehicle,AGV)存取车路径规划问题,提出一种基于改进蚁群算法(IACO)的泊车系统路径规划方法。首先利用栅格法建立环境模型;其次,通过引入新的距离启发函数因子、调整状态转移概率和更改信息素更新规则对传统蚁群算法(TACO)进行优化改进;最后,在不同规格栅格环境下,以路径长度最短、算法收敛代数最小为评价指标,以传统蚁群算法和改进蚁群算法为搜索策略,运用Matlab对AGV存取车路径规划过程进行仿真测试,结果显示:AGV运用传统蚁群算法和改进蚁群算法均能有效避开障碍物,然后搜索到一条从起点到终点的无碰优化路径;与传统蚁群算法相比,改进蚁群算法规划的路径长度最短,开始收敛代数最小,表明改进算法正确、可行及有效,且具有较强的全局搜索能力和较好的收敛性能,能够满足AGV存取车路径规划要求。
关 键 词:蚁群算法 泊车系统 AGV 路径规划
分 类 号:TP249] TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...