期刊文章详细信息
文献类型:期刊文章
机构地区:[1]华东师范大学信息科学技术学院上海市多维度信息处理重点实验室,上海200241 [2]上海交通大学图像处理与模式识别研究所,上海200240
基 金:国家自然科学基金(61302125;61377107);上海市自然科学基金(17ZR1408500)
年 份:2018
卷 号:44
期 号:2
起止页码:257-263
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAS、CSA、CSA-PROQEUST、CSCD、CSCD_E2017_2018、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:自步学习的动作识别方法采用课程学习的思路,忽略了不同视角动作特征对课程的影响,对多分类的人体两维视频复杂动作识别无法取得满意效果。针对上述问题,提出一种多视角自步学习算法。选取5个视角并提取Trajectory、HOG、HOF、MBHx和MBHy作为各自视角下的特征信息,利用自步学习算法学习得出对应视角下的动作分类课程,使用线性规划增强方法将不同视角下的课程进行融合,得出更适合解决多类复杂动作识别问题的综合课程。实验结果表明,相比单一视角自步学习方法和多视角支持向量机方法,该方法提高了多类复杂动作识别的效率和准确率,具有更高的可操作性和更广泛的应用前景。
关 键 词:人体动作识别 多视角融合 自步学习 线性规划增强 支持向量机
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...