期刊文章详细信息
基于卷积神经网络的田间多簇猕猴桃图像识别方法 ( EI收录)
Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks
文献类型:期刊文章
机构地区:[1]西北农林科技大学机械与电子工程学院,杨凌712100 [2]农业部农业物联网重点实验室,杨凌712100 [3]Precision Agriculture Research Chair,King Saud University,Riyadh 11451,Saudi Arabia
基 金:陕西省重点研发计划-般项目(2017NY-164);陕西省科技统筹创新工程计划项目(2015KTCQ02-12);国家自然科学基金资助项目(61175099);西北农林科技大学国际合作种子基金(A213021505)
年 份:2018
卷 号:34
期 号:2
起止页码:205-211
语 种:中文
收录情况:AJ、BDHX、BDHX2017、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2017_2018、EI、FSTA、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:为实现田间条件下快速、准确地识别多簇猕猴桃果实,该文根据猕猴桃的棚架式栽培模式,采用竖直向上获取果实图像的拍摄方式,提出一种基于Le Net卷积神经网络的深度学习模型进行多簇猕猴桃果实图像的识别方法。该文构建的卷积神经网络通过批量归一化方法,以Re LU为激活函数,Max-pooling为下采样方法,并采用Softmax回归分类器,对卷积神经网络结构进行优化。通过对100幅田间多簇猕猴桃图像的识别,试验结果表明:该识别方法对遮挡果实、重叠果实、相邻果实和独立果实的识别率分别为78.97%、83.11%、91.01%和94.78%。通过与5种现有算法进行对比试验,该文算法相对相同环境下的识别方法提高了5.73个百分点,且识别速度达到了0.27 s/个,识别速度较其他算法速度最快。证明了该文算法对田间猕猴桃图像具有较高的识别率和实时性,表明卷积神经网络在田间果实识别方面具有良好的应用前景。
关 键 词:图像处理 图像识别 算法 深度学习 卷积神经网络 猕猴桃
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...