期刊文章详细信息
文献类型:期刊文章
机构地区:[1]江苏科技大学理学院,江苏镇江212003 [2]河北师范大学数学与信息科学学院,石家庄050024 [3]江苏科技大学计算机科学学院,江苏镇江212003
基 金:国家自然科学基金资助项目(61503160;61572242);江苏省高校自然科学基金(15KJB110004)资助
年 份:2018
卷 号:45
期 号:1
起止页码:62-66
语 种:中文
收录情况:BDHX、BDHX2017、CSA、CSCD、CSCD_E2017_2018、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:目前,大多数聚类方法是二支聚类,即对象要么属于一个类,要么不属于一个类,聚类的结果必须具有清晰的边界。然而,将某些不确定的对象强制分配到某个类中将降低聚类结果的结构和精度。三支聚类是一种重叠聚类,它采用核心域和边界域来表示每个类别,较好地处理了具有不确定性对象的聚类问题。提出了一种使用样本邻域将二支聚类转化为三支聚类的方法。该方法利用二支聚类的结果和每个类中元素的邻域是否完全包含在该类中来对集合进行收缩,同时利用不在该类中的元素的邻域是否与该类有交集来进行扩张。收缩的区域称为核心域,扩张域和核心域的差集称为边界域。在UCI数据集上的实验结果显示,该方法在提高聚类结果的结构和F1值方面有较好的效果。
关 键 词:三支聚类 邻域 K-MEANS聚类 谱聚类
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...