期刊文章详细信息
文献类型:期刊文章
机构地区:[1]数据工程与知识工程教育部重点实验室(中国人民大学),北京100872 [2]中国人民大学信息资源管理学院,北京100872 [3]清华大学计算机科学与技术系,北京100084 [4]清华大学信息技术研究院,北京100084 [5]清华信息科学与技术国家实验室(筹),北京100084
基 金:国家自然科学基金项目(91646202;71103020);国家社会科学基金(15BTQ054;12&ZD220)资助
年 份:2018
卷 号:45
期 号:1
起止页码:1-13
语 种:中文
收录情况:BDHX、BDHX2017、CSA、CSCD、CSCD_E2017_2018、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:大数据时代的到来催生了一门新的学科——数据科学。首先,探讨了数据科学的内涵、发展简史、学科地位及知识体系等基本问题,并提出了专业数据科学与专业中的数据科学之间的区别与联系。其次,分析现阶段数据科学的研究特点,并分别提出了专业数据科学、专业中的数据科学及大数据生态系统中的相对热门话题。接着,探讨了数据科学研究中的10个争议及挑战:思维模式的转变(知识范式还是数据范式)、对数据的认识(主动属性还是被动属性)、对智能的认识(更好的算法还是更多的数据)、主要瓶颈(数据密集型还是计算密集型)、数据准备(数据预处理还是数据加工)、服务质量(精准度还是用户体验)、数据分析(解释性分析还是预测性分析)、算法评价(复杂度还是扩展性)、研究范式(第三范式还是第四范式)、人才培养(数据工程师还是数据科学家)。然后,提出了数据科学研究的10个发展趋势:预测模型及相关分析的重视,模型集成及元分析的兴起,数据在先、模式在后或无模式的出现,数据一致性及现实主义的回归,多副本技术及靠近数据原则的广泛应用,多样化技术及一体化应用并存,简单计算及实用主义占据主导地位,数据产品开发及数据科学的嵌入式应用,专家余及公众数据科学的兴起,数据科学家与人才培养的探讨。最后,结合文中工作,对数据科学研究者给出了几点建议和注意事项。
关 键 词:数据科学 大数据 数据产品开发 数据加工 数据驱动
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...