登录    注册    忘记密码

期刊文章详细信息

Phase field method simulation of faceted dendrite growth with arbitrary symmetries  ( EI收录)  

任意对称性小平面枝晶生长的相场法模拟(英文)

  

文献类型:期刊文章

作  者:陈志[1] 陈佩[1] 巩贺贺[2] 段培培[1] 郝丽梅[3] 金克新[1]

机构地区:[1]西北工业大学理学院应用物理系,西安710129 [2]西北工业大学软件与微电子学院,西安710129 [3]西安科技大学理学院应用物理系,西安710054

出  处:《Transactions of Nonferrous Metals Society of China》

基  金:Projects(11102164,11304243)supported by the National Natural Science Foundation of China;Project(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China;Project(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of China;Project(13GH014602)supported by the Program of New Staff and Research Area Project of NWPU,China

年  份:2018

卷  号:28

期  号:2

起止页码:290-297

语  种:中文

收录情况:AJ、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2017_2018、EBSCO、EI、IC、INSPEC、JST、SCIE、SCOPUS、WOS、ZGKJHX、普通刊

摘  要:A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.

关 键 词:phase field method  strong anisotropy  faceted dendrite  Wulff theory  tip velocity  SYMMETRY

分 类 号:O782]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心