期刊文章详细信息
文献类型:期刊文章
机构地区:[1]武汉科技大学机械自动化学院,武汉430081
基 金:湖北省自然科学基金项目(2016CFC752);武汉科技大学基金项目(2017ZX003)~~
年 份:2017
卷 号:22
期 号:12
起止页码:1640-1663
语 种:中文
收录情况:BDHX、BDHX2014、CSCD、CSCD2017_2018、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:目的工业产品的表面缺陷对产品的美观度、舒适度和使用性能等带来不良影响,所以生产企业对产品的表面缺陷进行检测以便及时发现并加以控制。机器视觉的检测方法可以很大程度上克服人工检测方法的抽检率低、准确性不高、实时性差、效率低、劳动强度大等弊端,在现代工业中得到越来越广泛的研究和应用。方法以机器视觉表面缺陷检测为研究对象,在广泛调研相关文献和发展成果的基础上,对基于机器视觉在表面缺陷检测领域的应用进行了综述。分析了典型机器视觉表面缺陷检测系统的工作原理和基本结构,阐述了表面缺陷视觉检测的研究现状、现有视觉软件和硬件平台,综述了机器视觉检测所涉及到的图像预处理算法、图像分割算法、图像特征提取及其选择算法、图像识别等相关理论和算法研究,并对每种主要方法的基本思想、特点和存在的局限性进行了总结,对未来可能的发展方向进行展望。结果机器视觉表面缺陷检测系统中,图像处理和分析算法是重要内容,算法各有优缺点和其适应范围。如何提高算法的准确性、实时性和鲁棒性,一直是研究者们努力的方向。结论机器视觉是对人类视觉的模拟,机器视觉表面检测涉及众多学科和理论,如何使检测进一步向自动化和智能化方向发展,还需要更深入的研究。
关 键 词:机器视觉 表面缺陷 检测算法 图像处理 图像识别
分 类 号:TP391.4] TN911.7[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...