期刊文章详细信息
基于DCNN的人脸识别技术在考生身份验证中的应用研究
The Research of Face Recognition Technology Based on DCNN in Candidate Authentication
文献类型:期刊文章
机构地区:[1]郑州大学信息工程学院,郑州450001 [2]河南省招生办公室,郑州450046
基 金:国家自然科学基金项目(61379079);河南省国际合作项目(152102410021)
年 份:2017
卷 号:47
期 号:6
起止页码:699-707
语 种:中文
收录情况:CAS、JST、RCCSE、ZGKJHX、ZMATH、普通刊
摘 要:考试的公平、公正、安全和秩序是全社会关注的焦点,尤其是备受关注的高招考试.近些年来DCNN(deep convolution neural networks)算法促进了人脸识别技术的实际应用,因此若在考生身份验证中采用人脸识别技术将进一步保证考试公平,降低人工成本.但是针对具体的应用,DCNN算法需要做相应的改变.依托真实的考生数据集以及应用场景,基于GoogLeNet设计了一种更具表达能力更适用的网络结构GoogLeNet-D;因将人脸查询/分类精准率作为模型评估的方法,所以没有判定阈值,为了设定合适的阈值判断考生是否为同一个人,提出了一种直接、简单有效的定量确定阈值算法,能够在计算准确率的同时确定阈值.最终利用该阈值判定算法,在2014-2016年170万考生共10 406 024张人脸数据集上选取出基于GoogLeNet-D训练的最优模型,其在20万人1 022 031张人脸的测试集上取得了98.87%的人脸分类精准率,同时得到了该模型的最佳阈值为0.35.
关 键 词:深度卷积神经网络 人脸识别 身份验证 GoogLeNet-D 阈值判定
分 类 号:TP393]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...