期刊文章详细信息
K-means算法最佳聚类数评价指标研究
Study on the Index of Determining the Optimal Clustering Number of K-means Algorithm
文献类型:期刊文章
机构地区:[1]中国人民公安大学信息技术与网络安全学院,北京100038
年 份:2017
卷 号:16
期 号:11
起止页码:5-8
语 种:中文
收录情况:普通刊
摘 要:聚类分析广泛应用于商务智能、图像模式识别、Web搜索、生物学等领域,是一种无指导的观察式学习。然而,绝大多数聚类分析算法都面临着一个非常棘手的问题——最佳聚类数的确定。K-means是典型的基于划分的聚类方法,它需要用户输入聚类数K,但这通常非常困难。聚类数的确定是决定聚类质量的关键因素。虽然有许多被用来估计最优聚类数的聚类评价指标,但对于不同的聚类算法,不同的评价指标效果差异很大。为确定针对K-means聚类算法效果最好的评价指标,采用4种典型的不同聚类结构特征的人工模拟数据以及来自UCI的真实数据集对7种评价指标的性能进行实验比较,结果表明CH指标和I指标在评估K-means算法的最佳聚类数时效果较好。
关 键 词:聚类指标 K-MEANS算法 聚类分析 聚类数
分 类 号:TP301]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...