登录    注册    忘记密码

期刊文章详细信息

静息态功能磁共振成像的脑功能分区综述    

Review on brain functional parcellation based on resting-state functional magnetic resonance imaging data

  

文献类型:期刊文章

作  者:胡颖[1] 王丽嘉[1] 聂生东[1]

机构地区:[1]上海理工大学医学影像工程研究所,上海200093

出  处:《中国图象图形学报》

基  金:国家自然科学基金项目(60972122);上海市自然科学基金项目(14ZR1427900);上海高校青年教师培养资助计划(ZZslg15063);微创励志创新基金项目(YS30809144)~~

年  份:2017

卷  号:22

期  号:10

起止页码:1325-1334

语  种:中文

收录情况:BDHX、BDHX2014、CSCD、CSCD2017_2018、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:目的越来越多的研究表明,基于静息态功能磁共振成像(rs-f MRI)的大脑功能分区比传统的大脑结构分区(如AAL分区、Brodmann分区等)在功能网络构建中功能一致性更高。但现阶段对于大脑功能模块的划分较粗糙,需要更精细准确的脑功能分区,明确宏观尺度的基本功能单元。为能使脑科学领域的研究者对基于静息态功能磁共振成像的脑功能分区进行有益的探索和应用,本文对其进行系统综述。方法从rs-f MRI数据与大脑功能网络的关系出发,理清脑功能区分割的一般思路,对近几年来脑功能分区算法中出现的新思路、新方法以及对原有方法的改进做了较全面的阐述;最后总结该领域现阶段面临的问题并对未来的研究方向做了展望。结果根据脑区情况,将脑功能分区分为全脑功能分区和局部脑功能分区,并分别阐释这两方面的优势与应用。同时,将脑功能分区算法归纳为基于数据驱动和基于模型驱动两大类,并展示了各类分区算法的优势以及面临的难点和挑战。结论基于静息态功能磁共振成像的脑功能分区的研究已经取得了一些进展和有价值的研究成果,但是距离研究人脑机制,应用于脑部疾病的预防和诊断以及启示类脑科学的发展,还需要对脑功能分区方法进行更深入的研究和完善。后续研究中可将传统的分区算法和先验知识、空间领域信息、空间约束、稀疏编码、特征选择和采样学习等思想结合起来,形成融合性的脑功能分区算法,致力于更为细致准确的大脑功能分区和脑功能网络构建,解析脑的高级功能。

关 键 词:脑功能分区  静息态 功能磁共振成像 功能网络  分区算法  

分 类 号:TP391.4]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心