登录    注册    忘记密码

期刊文章详细信息

四阶龙格—库塔法的原理及其应用    

  

文献类型:期刊文章

作  者:冯建强[1] 孙诗一[1]

机构地区:[1]扬州大学数学科学学院

出  处:《数学学习与研究》

基  金:扬州大学教改项目YZUJX2016-4A;扬州大学2016科创项目资助

年  份:2017

期  号:17

起止页码:3-5

语  种:中文

收录情况:普通刊

摘  要:微分方程的数值模拟在工程应用中有很重要的意义.而在诸多的数值方法中,龙格—库塔法是使用最广泛、最有效的数值方法之一.龙格—库塔法的理论基础是泰勒级数方法,龙格—库塔法吸收了泰勒公式方法中的高精度同时摒弃了泰勒级数方法中求高阶导数的弊端,利用复合函数的思想合理而巧妙地回避了求高阶导数这一难点,使数值格式显得非常对称和紧凑.四阶龙格—库塔法是求解微分方程的非常有用的工具,尽管其计算公式非常简单,但该数值格式的基本原理却是非常深刻的.首先,本文利用数学分析、数值分析的知识理解欧拉方法及泰勒级数方法的局限性,从而理论分析导出龙格—库塔四阶格式(四阶格式的完整导出是任何一本参考书上所没有的).然后,探讨了四阶龙格—库塔法在捷联惯性导航中的应用.最后,对四阶龙格—库塔法的收敛性与稳定性进行了讨论.

关 键 词:四阶龙格—库塔法  收敛性 稳定性 微分方程

分 类 号:O241.8]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心